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Familial primary pulmonary hypertension is a rare autosomal dominant disorder that has reduced penetrance and
that has been mapped to a 3-cM region on chromosome 2q33 (locus PPH1). The phenotype is characterized by
monoclonal plexiform lesions of proliferating endothelial cells in pulmonary arterioles. These lesions lead to elevated
pulmonary-artery pressures, right-ventricular failure, and death. Although primary pulmonary hypertension is rare,
cases secondary to known etiologies are more common and include those associated with the appetite-suppressant
drugs, including phentermine-fenfluramine. We genotyped 35 multiplex families with the disorder, using 27 mi-
crosatellite markers; we constructed disease haplotypes; and we looked for evidence of haplotype sharing across
families, using the program TRANSMIT. Suggestive evidence of sharing was observed with markers GGAA19e07
and D2S307, and three nearby candidate genes were examined by denaturing high-performance liquid chroma-
tography on individuals from 19 families. One of these genes (BMPR2), which encodes bone morphogenetic protein
receptor type II, was found to contain five mutations that predict premature termination of the protein product
and two missense mutations. These mutations were not observed in 196 control chromosomes. These findings
indicate that the bone morphogenetic protein–signaling pathway is defective in patients with primary pulmonary
hypertension and may implicate the pathway in the nonfamilial forms of the disease.

Familial primary pulmonary hypertension (PPH [MIM
178600]) is a rare (1/105–1/106) autosomal dominant
disorder that has reduced penetrance and that has been
mapped to a 3-cM region on chromosome 2q33 (locus
PPH1) (Morse et al. 1996, 1997; Nichols et al. 1997;
Deng et al. 2000). It is characterized by monoclonal
plexiform lesions of proliferating endothelial cells in pul-
monary arterioles (Lee et al. 1998). These lesions lead
to elevated pulmonary-artery pressures, right-ventricular
failure, and death (Rich et al. 1987). The disease can
occur from infancy throughout life; it has a mean age
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at onset of 36 years, and the ratio of affected females
to affected males is 2:1. Without intervention, the me-
dian survival is !3 years after diagnosis (D’Alonzo et al.
1991), although recent advances, such as long-term
prostacyclin therapy (Barst et al. 1996) and transplan-
tation (Pasque et al. 1995), have significantly improved
both the quality of life and the chances of survival in
some patients. Although familial PPH (FPPH) is rare,
cases secondary to known etiologies are more common
and include those associated with the appetite-suppres-
sant drugs, including phentermine-fenfluramine (Doug-
las et al. 1981; Abenhaim et al. 1996).

We have collected a number of multiplex families with
PPH, using experimental protocols approved by the in-
stitutional review board of the College of Physicians and
Surgeons at Columbia University. Methods used for clin-
ical examination, as well as the diagnostic criteria, have
been described elsewhere (Morse et al. 1997). The fam-
ilies with FPPH were ascertained on the basis of phy-
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Figure 1 Intron/exon structure of the human BMPR2 gene. Intron and exon sizes are as indicated. Protein start and stop codons are
indicated by the horizontal arrow and “TGA,” respectively. Mutations that cause premature termination of BMPR2 are shown as blackened
arrows; unblackened arrows denote mutations in Arg491. The transmembrane and kinase domains are encoded by the indicated exons.

sician referrals (meetings, literature, Internet, and e-
mail), self-referrals via the Internet, and blood samples
from the 1994 and 1996 Pulmonary Hypertension As-
sociation meetings (Stone Mountain, GA). The families
were predominantly white, and most originated from
the United States, Canada, and Europe. During the past
2–3 years, three individuals originally classified as spo-
radic PPH had to be reclassified as FPPH, when another
family member developed the disease. Also, several
asymptomatic individuals known to carry the PPH1
gene have developed the disease within the past 4 years.
Using DNA that was extracted from either whole-blood
samples or formalin-fixed, paraffin-embedded tissue, we
genotyped 35 of these families (72 affected individuals
and 319 normal individuals and carriers), with 27 mi-
crosatellite markers located in the 3-cM minimal genetic
region, as described elsewhere (Deng et al. 2000). With
the genetic model and marker order determined by ra-
diation-hybrid mapping (Deng et al. 2000), a 10-marker
multipoint analysis using GENEHUNTER version 2.0
(Kruglyak et al. 1996) gave a nearly constant LOD score
of 10, across the region (data not shown). At a recom-
bination fraction of 0, the maximum LOD scores of the
two-point analyses using MLINK from FASTLINK ver-
sion 4.1p (Cottingham et al. 1993) were more variable,
ranging from 0.6 to 8.6, with the higher scores clustering
toward the telomeric end (data not shown). Given the
low prevalence of the disorder and the consequent pos-

sibility that some of the families were from a common
founder, we reconstructed, when possible, the 27-
marker-microsatellite disease haplotype from each fam-
ily and visually inspected these haplotypes in order to
detect any shared segments. No obvious shared DNA
segments were found, so we used the haplotype-analysis
program TRANSMIT version 2.5 (1999) (available from
the “David Clayton’s Genetic Programs” Web page; also
see Clayton 1999) to look in a more rigorous fashion.
Suggestive evidence of sharing ( ) was found withP p .07
the 345-/214-bp haplotype of markers GGAA19e07 and
D2S307. Since these markers were in the telomeric clus-
ter, we began our mutation scan in this region.

We investigated the genetic variation in the coding
sequence of three nearby candidate genes by examining
22 individuals from 19 families with FPPH and 2 nor-
mal controls, using denaturing high-performance liquid
chromatography (dHPLC) with a WAVE� Nucleic
Acid Fragment Analysis System (Transgenomics), ac-
cording to the manufacturer’s directions and as de-
scribed elsewhere (Underhill et al. 1997; O’Donovan
et al. 1998). These individuals were chosen on the basis
of the amount of DNA available. PCR-amplification
products (maximum size 602 bp) were run with as
many as three melting profiles, for fragments with mul-
tiple melting domains. DNA sequence determination of
fragments containing potential variants was performed
by cycle sequencing using Big Dye� terminators (Ap-
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Table 1

BMPR2 Gene: Intron/Exon Boundaries, Known Size of Exons, and Approximate Sizes of Introns

Exon (Size) Exon 3′ 5′ Intron Sequence Intron (Size) 3′ Intron Sequence Exon 5′

1 (1460 bp) GCT G gtgagtagctccggc.. 1 (130 kb) ..tttcctttattttag CT TCG
Ala A la Ser

2 (171 bp) CAA G gcaagtgatactttc.. 2 (∼2.3 kb) ..catattgatttatag GA TAT
Gln G ly Cys

3 (171 bp) CTC A gtaagtaaagtaacc.. 3 (130 kb) ..tttgttttcttttag GT CCA
Leu S er Pro

4 (111 bp) ACA G gtaaaaattaccatt.. 4 (∼3.8 kb) ..ttcctgttcttatag GA GAC
Thr G ly Asp

5 (92 bp) TTG GAG gtaagtttgccgtta.. 5 (∼6 kb) ..ttaaaacacttgcag CTG ATT
Leu Glu Leu Ile

6 (231 bp) CCC AAT gtaagttcttcatag.. 6 (∼4.1 kb) ..ttttcctctatatag GGA TCT
Pro Asn Gly Ser

7 (115 bp) GGA G gtaagatagtcaata.. 7 (∼7.9 kb) ..aaattatccaaacag AT CAT
Gly A sp His

8 (161 bp) AGC GAG gtgagtgtatacaaa.. 8 (∼1.6 kb) ..actctaatttatcag GTT GGC
Ser Glu Val Gly

9 (148 bp) CCA G gtaaaaactactgtc.. 9 (19.7 kb) ..tctacaaatccacag GG GAA
Pro G ly Glu

10 (137 bp) AGC CTG gtaagaaaaaactaa.. 10 (15 kb) ..tactttgtcttacag GCA GTG
Ser Leu Ala Val

11 (173 bp) GAA CG gtaagaccctaaggg.. 11 (120 kb) ..ctttctttctttaag C AAC
Glu Ar g Asn

12 (1,280 bp) CAG A gtaagtggagggatc.. 12 (∼3.2 kb) ..cacttttattttcag TA GGT
Gln I le Gly

13 (1251 bp)

plied BioSystems), and sequencing products were re-
solved on Long Ranger� gels (BioWhittaker Molecular
Applications) and were detected with an ABI model
377 DNA sequencer. DNA sequence traces were ana-
lyzed by Vector NTI suite 5.5 (Informax). The first two
genes, CD28 and CTLA4, were candidates because of
their involvement in immune system regulation (Morse
and Barst 1994). No variation in CD28 was observed.
In CTLA4, we found one previously unreported single-
nucleotide polymorphism (SNP)—that is, 49ArG, with
an allele frequency of .50—that causes a nonconser-
vative change in protein structure (A17T). The poly-
morphism was homozygous in some of the patients and
in one of the controls. Since it did not fit known in-
heritance patterns for the disease, this SNP was ruled
out as a potential disease mutation.

The third positional candidate, the gene encoding the
bone morphogenetic protein (BMP) receptor type II
(BMPR-II [gene BMPR2, also known as “T-ALK,”
“CL4-1,” and “BRK-3”]), a member of the transform-
ing growth factor b (TGF-b)–receptor superfamily, was
suggested on the basis of the role of the BMP-signaling
pathway in lung morphogenesis (Warburton et al. 2000).
The cDNA sequence of this ∼4-kb gene encoding a
1,038-amino-acid protein has been described elsewhere
(Kawabata et al. 1995; Liu et al. 1995; Nohno et al.
1995; Rosenzweig et al. 1995). To deduce the genomic
structure of BMPR2 (fig. 1 and table 1), we found ge-

nomic sequences homologous to exons 1 and 8–13, by
querying the National Center for Biotechnology Infor-
mation high-throughput genome sequence (HTGS) da-
tabase, using BLAST (Altschul et al. 1990). The intron
size and DNA sequence of the other intron-exon bound-
aries were determined by amplifying and sequencing
PCR products by means of oligonucleotide primers de-
signed to amplify either across neighboring exons or out
to a nearby Alu repeat, with the structure of mouse
BMPR2 (Beppu et al. 1997) being used as a guide. We
then designed oligonucleotide primers to amplify the ex-
ons from genomic DNA of the patients (table 2). These
PCR fragments were screened by dHPLC, and the DNA
sequences of those fragments containing apparent var-
iation were determined. Primers to amplify exons 2–7
were designed prior to having the intron/exon structure,
and hence a total of 204 bp of known exonic sequence
was not screened.

In 9 of the 19 families screened, we observed muta-
tions that are likely to disrupt the function of the re-
ceptor. Five of these mutations predict premature ter-
mination of BMPR-II, in exons 4, 6, 8, and 12, and each
was seen in only one family (fig. 1 and table 3). In ad-
dition, in exon 11 in three families, an SNP that causes
a nonconservative change in amino acid sequence—that
is, from arginine, conserved in all known type II TGF-
b–superfamily receptors (fig. 2), to tryptophan—was
seen (fig. 1 and table 3). These three families do not
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Table 2

Oligonucleotide Primer Sequences Used to Screen BMPR2

EXON

PRIMERa SIZE OF PCR
PRODUCT

(bp)5′ 3′

1 AACTAGTTCTGACCCTCGCCCC GGACGCATGGCGAAGGGCAA 602
2b TAGCTTCGCAGAATCAAGAA TGCCTTGTTTTACAAGATTT 177
3b TAGGATGTTGGTCTCACATT TACTGAGTGGTGTTGTGTCA 177
4b TAGGTCCACCTCATTCATTT TACCTGTCAACATTCTGTAT 117
5b TAGGAGACCGTAAACAAGGT TACCTCCAACAGTTTCAGAT 98
6b CAGCTGATTGGCCGAGGTCG TACATTGGGATAGTACTCCA 237
7b TAGGGATCTTTATGCAAGTA TACCTCCTCGTGGTAATTCT 121
8 GCAGAAAAATAATACTACTTCTATA GATGTTTTAATTAAATTATCATTTC 319
9 AGAATATGCTACGTTCTCTC ACACTAGATAGCAATGAACTAAAGG 336
10 GTATCAGAAATACCCCTGTT TTAGGCAACTCCAAAAACTAT 328
11 GGTAAACTGAAAAGCTCAATAC CATTGAACTATTAGGCTGGT 345
12-1 GATCCCCTTTCTTTCTTTAAGC CTGTTTAAGAGAGTGCTCCATG 510
12-2 GAACCTCAAGGAAAGCTCTG AGCATGGGAGTTAACACTGT 436
12-3 ACCTCATGTGGTGACAGTCA ATTGGAATTAGTTCGGCCAC 316
12-4 ATTCCAGTCCTGATGAGCAT AGTTATTTAAATGGCCCCAA 343
13 TTACATCCCTTACCCGTTAT TTAAAGCAAGTCTTTGTTGC 454

a Exonic DNA sequences are underlined.
b Amplified by primers within the exon.

share a microsatellite marker haplotype. The same ar-
ginine was changed to glutamine (1472GrA) in the pro-
band of another family, PPH019 (fig. 1 and table 3), but
this proband’s parents are genotypically normal. This
proband (from whom we have a DNA sample) had both
a son who died of PPH in childhood (presumptive; no
postmortem was performed) and a deceased uncle with
a history of portal hypertension and unspecified cardiac
problems. Since the 1472GrA mutation had not been
transmitted through either parent, more history on the
“affected” uncle was obtained, and he was found to have
longstanding alcoholism—and we think that this, rather
than right-sided heart failure secondary to PPH, was
responsible for his portal hypertension. The observation
of this new mutation suggests that mutations in BMPR2
might also cause sporadic cases of PPH.

Except for family PPH019 (see above), the pattern of
mutations observed when all additional members of the
other eight families were screened by dHPLC and DNA
sequencing was identical to the segregation pattern of
PPH. None of the putative mutations were observed in
96 additional samples (a total of 196 chromosomes to-
tal, including 4 from the screening). In both samples, we
also observed a synonymous SNP (2811GrA) with a
minor-allele frequency of .21. Since the nine mutations
appeared to be functional, and since no such mutations
were observed in the controls, we applied Fisher’s exact
test to the data, and we observed a significant difference
( ), in mutation prevalence, between cases andP ! .0001
controls.

The mutation in exon 4 is in the transmembrane do-
main, and those in exons 6, 8, and 11 are in the kinase

domain, of this serine/threonine kinase receptor (fig. 1).
In functional studies of the homologous TGF-b receptor
type II (TbR-II), cell lines lacking endogenous TbR-II
were transfected with TbR-II constructs lacking either
the complete kinase domain or amino acids 490–508
(homologous to amino acids 452–471 in BPMR-II)
(Wieser et al. 1993). These constructs were unable to
restore the ability to inhibit growth, stimulate fibronec-
tin production, and drive transcription from a TGF-
b–responsive element, in response to exogenous TGF-b
that was observed when the cell lines were transfected
with the wild-type TbR-II (Wieser et al. 1993). Fur-
thermore, the construct lacking amino acids 490–508
was unable to function as a kinase in vitro (Wieser et
al. 1993). Therefore, at least three of these mutations
(premature terminations in exons 4, 6, and 8) should
encode a nonfunctional receptor that is unable both to
phosphorylate a type I receptor and to propagate the
signal from a BMP ligand, since they will lack this region
of the kinase domain. The lack of kinase activity would
be consistent with a disease model of haploinsufficiency.
Alternatively, the prematurely terminated products
could act as a dominant negatives, as has been observed
for TbR-II (Wieser et al. 1993) and endoglin (Lux et al.
2000). Given that BMPR-II is likely to be present, on
the cell surface, as a dimer (Gilboa et al. 2000), only
25% of such complexes might be functional.

The two mutations in exon 11 change Arg491. This
arginine is highly conserved in all type II TGF-b–
superfamily receptors (fig. 2) and appears to be homol-
ogous to the invariant Arg280 in subdomain XI in other
protein kinases (Hanks et al. 1988). Mutation of the
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Table 3

BMPR2 Mutations Observed in PPH

Family or Families No. of A/C/Ua Exon DNA Sequence Variationb

Protein Sequence
Variation

PPH001, PPH008, PPH021 4/5/13 11 1471CrT R491W
PPH010 2/0/1 8 1099–1103delGGGGA E368fsX1
PPH015 6/1/8 12 2579delT N861fsX10
PPH017 3/0/6 4 507–510delCTTTinsAAA C169X
PPH018 3/2/4 12 2617CrT R873X
PPH019 1/0/5 11 1472GrA R491Q
PPH022 2/0/0 6 690–691delAGinsT K230fsX21

a No. of DNA samples available for analysis of affected (A), known carrier (C), and unaffected (U)
individuals in each family or set of families, determined by segregation pattern and DNA sequencing/
dHPLC, except in the case of family PPH019 (in which only DNA sequencing was used; see text).

b Sequences are referenced to GenBank BMPR2 cDNA sequence number NM_001204 (see NCBI
GenBank Overview); the numbering is based on the use of “�1” to denote the A of the starting methionine
codon.

Figure 2 Sequence alignment of the type II TGF-b–superfamily receptors surrounding R491 in BMPR-II. The mutation in families PPH001,
PPH008, and PPH021 was aligned with all known type II receptors (150), and 14 of these are displayed. TGFR-II p TGF-b–receptor type II;
ActR-II p activin receptor type II; AMHR-II p anti–mullerian hormone type II receptor; DAF-4 p development-regulatory growth factor type
IV; XSTK3 p Xenopus activin receptor.

homologous amino acid in transfected TbR-II (R582A)
greatly reduces the ability of exogenous TGF-b to stim-
ulate transcription of a TGF-b–responsive element in
TbR-II–deficient cells (Brand and Schneider 1995). Last,
arginine is the amino acid that is most frequently
changed in disease mutations (see the “Statistics for Mis-
sense/Nonsense Mutations” Web page of the Institute of
Medical Genetics, University of Wales College of Med-
icine, Cardiff). Taken together, these results strongly sug-

gest that Arg491 is important to the function of BMPR-
II. The mutations in exon 12 occur in the intracellular
C-terminal domain, of unknown function, that is unique
to BMPR-II. Possible functions for this portion of the
molecule include the binding of downstream effector
proteins or a role in dimerization and/or trafficking.

We screened 93% (2,913/3,117 bp) of the known pub-
licly available coding sequence, the majority of the in-
tron/exon boundaries, and 518 bp in the 5′ and 3′ UTRs
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of BMPR2, but we failed to find a causative mutation
in 10 of the 19 families. There are several possible ex-
planations for why this may have occurred. The caus-
ative mutations may occur in known or currently un-
known coding sequences, intronic or regulatory regions
of BMPR2, or other genes in the BMP-signaling path-
way. Several of the linked families are large enough to
produce LOD scores suggestive of linkage to 2q33 (in-
dividual LOD scores 12), indicating that we may not
have screened the entire gene. It is possible that some of
the families have disease mutations in the 204 bp of
known exonic sequence that we missed in our screen,
and we currently are rescreening exons 2–7 in the 10
families. There is also the possibility that some of the
coding sequence of BMPR2 in lung tissue is currently
unknown and that we therefore have not screened it.
mRNA transcripts of 5, 6.5, 8, and 11.5 kb have been
observed on northern blots, with the longest transcript
predominating in lung tissue (Kawabata et al. 1995;
Nohno et al. 1995; Rosenzweig et al. 1995), so we may
have missed some alternatively spliced exons in our
screen.

We have screened only a small portion of the intronic
and regulatory sequences in these families, so mutations
in these regions are possible. One regulatory region that
we have examined is a (GGC)8–16 trinucleotide repeat at
the 5′ end of the gene, at positions �928 to �963, which
we amplified by means of the oligonucleotide primers
TGAGCGAATCACAACCCCCCG and GAGTTCCG-
TCAGGAGCCCAG. Using PCR, we have not observed
evidence of either an apparent increase in homozygosity
or expansion of the repeat, either of which would be
consistent with the suggestion of anticipation in PPH
(Loyd et al. 1995); but detection of this event might
require a Southern blot, and we have a limited quantity
of DNA from the affected individuals (many of whom
are deceased) in many of our families.

Last, it is possible that the mutations in these 10 fam-
ilies occur in other genes in the BMP-signaling pathway.
The microsatellite data are consistent—but not conclu-
sive—with linkage to PPH1 in all 19 families, but it is
possible that the families with little linkage information
could have no linkage to 2q33. An analogous situation
has been observed in hereditary hemorrhagic telangec-
tasia (HHT [MIM 187300]), another autosomal dom-
inantly inherited vascular disorder with defects in the
TGF-b–signaling pathway, where mutations have been
observed in two genes, endoglin (HHT1) (McAllister et
al. 1994) and the type I receptor ALK1 (HHT2) (John-
son et al. 1996).

So how do these mutations cause PPH? It is unlikely
that they act as in a dominant-negative fashion, by in-
hibiting the apoptotic effect of the TGF-b pathway, be-
cause BMPR-II does not associate with type I receptors
of the TGF-b family in transient-expression assays using

mammalian cells (Liu et al. 1995), even though this oc-
curs in vitro (Kawabata et al. 1995; Liu et al. 1995;
Nohno et al. 1995). It is also unlikely that these mu-
tations completely abolish the BMP-signaling pathway,
because mice homozygous for a mutation in the kinase
domain of BMPR2 die at day 9.5, prior to gastrulation
(heterozygotes are grossly normal) (Beppu et al. 2000).
This phenotype is very different from what we observe
in PPH, and suggests that only 25%–50% of the func-
tion of the BMP pathway is required for it to perform
a role in early development, given the analogy to TbR-
II, which has been discussed above. The BMP pathway
induces apoptosis in some cell types (Soda et al. 1998;
Kimura et al. 2000), so a partial block of signal trans-
mission might have a slow proliferative effect and could
be caused by either dominant-negative protein interac-
tions or reduced signal transmission due to haploinsuf-
ficiency of BMPR-II. As discussed above, both of these
mechanisms have been observed with prematurely ter-
minated protein products. Similarly, for both the mis-
sense mutations at Arg491 and the C-terminal muta-
tions, either model is possible. In either case, both
mechanisms lead to a partial block of BMP-signal trans-
mission, which is likely to cause the development of
PPH. This is similar to what has been observed for HHT
(Lux et al. 2000), and determination of the mechanism
of the mutations at PPH1 will require study of BMPR-
II expression.

BMP signaling may occur through both the “Smad”
(Massague 1998) and mitogen-activated protein kinase
(Kimura et al. 2000) cascades, and both are inhibited
by Smad6, which can be induced by vascular shear stress
(Topper et al. 1997). Either (a) the reduced apoptotic
signals from the BMP pathway, caused by mutations in
either BMPR2 or other molecules in the signaling cas-
cades, or (b) shear stress via Smad6, possibly after an
initial nidus of vascular injury, might underlie many
forms of PPH, including those associated with HIV or
appetite-suppressant drugs.
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